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Introduction
Cytotoxic chemotherapy agents have significantly 
contributed to cancer treatment; however, cancer remains 
a leading cause of mortality worldwide.1-3 These agents 
are classified into various groups based on different 
factors such as their mechanism of action and chemical 
structure, including alkylating agents, anthracyclines, 
alkaloids, antimetabolites, topoisomerase inhibitors, 
antitumor antibiotics, and the like.4-6 Chemotherapeutic 
agents often face barriers to effectively enter malignant 
cells, primarily due to p-glycoprotein and intracellular 
efflux.7 Consequently, drug resistance is a key drawback 
to successful cancer treatment, often leading to disease 
progression and relapse.8,9 Cancer cells can become 
resistant to treatment through several different 

mechanisms, including mutations, alternative signaling 
cascades, enhanced DNA repair, and the overexpression 
of drug efflux pumps.10 These adaptive responses enhance 
the proliferation and survival of cancer cells, even in the 
presence of chemotherapeutic agents.

Combination therapy strategies, which involve 
using multiple agents with different mechanisms of 
action, are crucial for overcoming drug resistance. By 
simultaneously targeting various pathways and cellular 
processes, combination therapy reduces the likelihood of 
drug resistance in cancer cells.11 This approach not only 
enhances treatment efficacy by maximizing cancer cell 
death but also minimizes the risk of resistance, leading 
to better clinical outcomes and prolonged survival for 
patients. Extensive efforts have been made to develop 
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Abstract
Background: Drug resistance poses significant challenges in cancer therapy, often resulting in 
treatment failure and disease progression. Doxorubicin, a widely used anthracycline, frequently 
faces resistance mechanisms in cancer cells, reducing its therapeutic efficacy. This study 
investigated the synergistic impact of doxorubicin and BV6 on the proliferation and apoptosis 
of cancer cells.
Methods: Doxorubicin was combined with BV6 to enhance apoptosis in murine breast (4T1) 
and colorectal (CT26) cancer cells. The effects of the combined treatment on cell viability 
and apoptosis were assessed using the MTT assay and apoptosis assays. Additionally, reverse 
transcription polymerase chain reaction (RT-PCR) was used to assess the impact of co-treatment 
on apoptosis gene expression. Data were analyzed using GraphPad Prism 6, with a P value of 
less than 0.05 considered significant.
Results: The findings showed that combining doxorubicin and BV6 results in significantly 
higher cytotoxicity and synergistically enhances apoptosis. Co-treatment with doxorubicin and 
BV6 induced cell death through decreased expression of anti-apoptotic factors and elevated 
expression of pro-apoptotic factors, improving the cancer cell death process.
Conclusion: The cancer cells’ susceptibility to doxorubicin is enhanced by BV6. Further studies 
should assess the applicability and effectiveness of these interventions in vivo.
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treatment strategies with potent toxicity to enhance the 
efficacy of chemotherapy. The primary objective in cancer 
treatment is to efficiently deliver precise amounts of drugs 
to tumor sites while reducing damage to healthy cells.12 
Nevertheless, the intricate tumor microenvironment 
(TME) frequently undermines the efficacy of antitumor 
treatments owing to various factors such as low pH, 
hypoxia, and overexpression of glutathione caused by 
abnormal metabolism in malignant cells. Consequently, the 
TME becomes an attractive target for enhanced anticancer 
response in multimodal therapeutic approaches.13

Doxorubicin, a cytotoxic anthracycline, is a well-known 
chemotherapeutic agent due to its effectiveness in treating 
various cancers.14 Its antitumor activities are primarily 
mediated through interference with DNA, topoisomerase 
II inhibition, and reactive oxygen species production.15 
These actions lead to DNA damage, disruption of DNA 
replication and transcription, and induction of oxidative 
stress, ultimately triggering apoptosis in cancer cells. 
Apoptosis is a programmed key mechanism through 
which doxorubicin exerts its cytotoxic effects, leading 
to cell death via intrinsic and extrinsic apoptotic 
pathways.16 On the other hand, second mitochondria-
derived activators of caspase (Smac) mimetics such as 
BV6 represent a promising class of therapeutic agents 
designed to counteract the anti-apoptotic effects of 
inhibitors of apoptosis proteins (IAPs) 17. By mimicking 
the natural pro-apoptotic mitochondrial protein Smac/
direct inhibitor of apoptosis-binding protein with low 
pI (DIABLO), BV6 binds to IAPs and disrupts their 
interaction with caspases, thereby promoting apoptosis in 
cancer cells.18

While doxorubicin induces DNA damage and 
oxidative stress, BV6 can amplify the apoptotic signaling 
by neutralizing IAPs, ensuring that cancer cells cannot 
evade programmed cell death.19,20 This dual approach 
can effectively sensitize resistant cancerous cells to 
doxorubicin, ultimately overcoming resistance and 
leading to more effective and durable treatment outcomes. 
Therefore, this study aimed to evaluate the impact of 
doxorubicin and BV6 co-treatment on tumor cell growth 
and progression.

Methods 
Reagents and Cell Lines
Cell lines for colon cancer (CT26) and breast cancer 
(4T1) were obtained from the National Cell Bank of Iran 
(Pasteur Institute of Iran, Tehran, Iran). To cultivate 
both cell lines, RPMI-1640 medium (Gibco, USA) 

supplemented with 10% fetal bovine serum (Gibco, USA) 
and penicillin-streptomycin (100 units/mL and 100 mg/
mL) was used at 37 °C with 5% CO2. MTT reagent was 
acquired from Merck (Mannheim, Germany).

Cytotoxicity Assay
The MTT assay was used to evaluate the impact of BV6 
and doxorubicin on cell survival. To administer this 
assay, 1.5 × 104 cells from each cell line were seeded in 
96-well plates. After 24 hours, various treatments were 
introduced into the wells, including BV6, doxorubicin, 
and BV6 + doxorubicin. Dimethyl sulfoxide (DMSO) 
served as the positive control, while untreated cells acted 
as negative controls. After the incubation period, each 
well received 100 μL of MTT (0.5 mg/mL in phosphate-
buffered saline) after the supernatant was removed. 
Following incubating for four hours at 37 °C and 5% 
CO2, the plates were placed in an incubator. To dissolve 
the formazan crystals, 100 μL of DMSO was then added. 
After another four-hour incubation, the supernatant was 
aspirated, and 150 μL of dimethyl sulfoxide was added, 
followed by an additional incubation period of 30 minutes. 
Subsequently, an enzyme-linked immunosorbent assay 
(ELISA) reader was used to measure the absorbance of 
each well at 545 and 630 nm wavelengths.21

Extraction of RNA and Real-Time Reverse Transcription 
Polymerase Chain Reaction 
Following the administration of various therapeutic 
groups, RNA extraction kits (BioFact, Korea) were used 
to perform the RNA extraction process in accordance 
with the manufacturer’s guidelines. Subsequently, total 
RNA was employed to synthesize complementary DNA 
(cDNA) using a cDNA synthesis kit (BioFact, Korea). The 
real-time reverse transcription-polymerase chain reaction 
(RT-PCR) assay utilized a Light-Cycler 480 RT-PCR 
system (Roche) and SYBR Green Master Mix (Thermo 
Fisher Scientific) to amplify and assess the expression 
of target genes. The thermocycling parameters for RT-
PCR were established as follows: an initial denaturation 
step at 95 °C for one minute, followed by 40 cycles of 
amplification. Each cycle comprised a denaturation phase 
at 95 °C for 15 seconds, an annealing phase at 58 °C for 30 
seconds, and an elongation phase at 72 °C for 35 seconds. 
Furthermore, the Livak method (2−ΔΔCT) was employed 
to indicate the comparative transcript levels for desired 
genes. The transcript level of β-actin, the housekeeping 
gene, was also determined. The primers employed in this 
study are detailed in Table 1.22

Table 1. The Utilized Primer Sequences

Gene Forward Reverse

BCL2 5′- GGCTGGGGATGACTTCTCTC -3′ 5′- ACAATCCTCCCCCAGTTCAC -3′

β-actin 5′- GGTCATCACTATTGGCAACG -3′ 5′- ACGGATGTCAACGTCACACT -3′

BIM 5′- GAGATACGGATTGCACAGGA -3′ 5′- ATTTGAGGGTGGTCTTCAGC -3′

Note. Bcl-2: B-cell lymphoma; BIM: Bcl-2 interacting mediator.
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Apoptosis Assay
Cell Death Detection ELISA kit (Sigma, USA) was used 
to evaluate cell apoptosis within cells (3 × 104) seeded in 
48-well plates. After culturing for 24 hours, cells were 
subjected to different treatment groups for 48 hours and 
removed from the plate, with washing performed twice 
during that time. After an hour of lysis buffer treatment, 
the cell pellet underwent another round of centrifugation 
(1200 rpm for 10 minutes). The ELISA kit was utilized to 
perform an apoptosis assay on the cell lysate. Absorbance 
at 405 nm was measured to determine the enrichment 
of mono- and oligo nucleosomes in the cytoplasm of 
apoptotic cells.

Statistical Analysis
GraphPad Prism 6 was used to statistically analyze the 
data, and the results were reported as mean ± standard 
deviation (SD). Statistical significance was determined at 
a P value < 0.05.

Results
Cancer Cell Viability
Treatment of cells with either BV6 or doxorubicin 
markedly increased cell death in both cell lines. Meanwhile, 
the combination of BV6 and doxorubicin resulted in the 
highest recorded toxicity (Figure 1).

BV6 and Doxorubicin-Induced Apoptosis Levels
An ELISA-based apoptosis assay was conducted, and the 
results revealed that while doxorubicin and BV6 each 
act as apoptosis inducers, their combination exhibits 
a significantly higher apoptotic effect in both cell lines 
(Figure 2). 

Expression of Apoptosis-Related Genes
The effects of doxorubicin and BV6 on the expression of 
apoptosis-regulating genes, including the pro-apoptotic 
Bcl-2 interacting mediator (BIM) and anti-apoptotic 
B-cell lymphoma 2 (BCL2), were investigated. Treatment 
with doxorubicin and BV6 resulted in the overexpression 
of BIM and the underexpression of BCL2, leading to an 
increased tendency for apoptosis (Figure 3).

Discussion
Drug resistance remains a dominating challenge in 
conventional cancer therapy. Drug resistance in cancer 
cells is associated with various factors, including genetic 
and epigenetic alterations, tumor heterogeneity, and 
complex interactions between tumor cells and the 
TME.23 Cancer cells can evade immune surveillance 
through multiple strategies, including the upregulation 
of immune checkpoint proteins, the release of cytokines 
that inhibit the immune system, and the stimulation of 
myeloid-derived suppressor cells and regulatory T cells. 
These adaptations not only compromise the efficacy of 
immunotherapies but also contribute to the dynamic 
and evolving nature of drug resistance. Recent studies 
have focused on targeting drug resistance mechanisms 
to elevate the effectiveness and capacity of anticancer 
treatments.24

A crucial method by which doxorubicin exerts its 
cytotoxic effects is apoptosis or programmed cell death. As 
the chief regulators of cell death, IAPs inhibit apoptosis by 
directly binding to and inhibiting caspases. Smac mimetics 
such as BV6 are a class of small molecules designed to 
antagonize IAPs, thereby promoting apoptosis in cancer 
cells. These agents mimic the function of Smac/DIABLO, 
binding to IAPs, displacing caspases, and neutralizing 
their anti-apoptotic effects. In addition to overcoming 
apoptosis resistance and inducing apoptosis, BV6 also 
hinders angiogenesis and metastasis in cancer cells.25

Czaplinski et al investigated the impacts of VCR/BV6 
cotreatment, demonstrating that this combination leads 
to the phosphorylation of BCL-2 during mitotic arrest, 
facilitates the activation of BAX (Bcl-2-associated X 
protein) and BAK, and reduces mitochondrial membrane 
potential (MMP).26 Marschall and Fulda indicated 
that BV6 and TMZ act synergistically to increase the 
transcriptional levels of pro-apoptotic proteins from the 
B-cell lymphoma 2 family, particularly Bax and Puma (a 
modulator of apoptosis regulated by p53).27 The current 
study utilized BV6 and doxorubicin to treat murine 
breast and colorectal cancer cells, revealing that BV6 and 
doxorubicin significantly affected cancer cell viability and 
growth with a synergistic effect. These agents effectively 

Figure 1. Cell Viability After Treatment with BV6 and Doxorubicin. Note. 
* P value < 0.05. Data were recorded after 24 hours of incubation. Bar 
charts indicate mean cellular viability ± SD.

Figure 2. BV6 and Doxorubicin-Induced Apoptosis Levels. Note. * P 
value < 0.05. Doxorubicin and BV6 induce apoptosis in treated cells. Bar 
charts show mean ± SD of apoptosis levels relative to the untreated group.
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modulated the expression of apoptosis-associated genes, 
leading to metastasis suppression and apoptosis initiation.

Inducing apoptosis is highlighted as a critical and 
effective strategy for developing anticancer agents.28 
Recent reports have focused on the potential capacity of 
doxorubicin-based combination therapies. A study by 
Vu et al demonstrated the extent to which doxorubicin 
selectively inhibits cell growth and proliferation through 
its Bcl-2-targeting inhibitory properties.29 Another study 
by Park et al demonstrated that the cytotoxic effects 
resulting from the combination of doxorubicin were 
linked to the activation and mitochondrial accumulation 
of BIM, which is a pro-apoptotic protein belonging 
to the Bcl-2 family.30 Yang et al confirmed that the 
combined use of mitochondria-targeted doxorubicin 
and the Bcl-2 function-converting peptide N9 led 
to considerable mitochondrial impairment, yielding 
promising results in the inhibition of both primary and 
metastatic breast cancer.31 Hseu et al also demonstrated 
the apoptosis-inducing impact of doxorubicin in gastric 
cancer by regulating apoptosis-related genes.32 Another 
investigation conducted by Sadeghi-Aliabadi et al 
revealed that doxorubicin decreases cell development, 
reproduction, and infiltration by triggering apoptosis.33 
Strong evidence of doxorubicin-related pro-apoptotic 
effects exists among several solid tumors, including breast 
cancer, hepatocellular carcinoma, and colorectal cancer 
cells.34-36

Several studies have suggested the synergistic effects of 
different anticancer agents in conjunction with doxorubicin. 
For instance, a recent study has proposed the combination 
of doxorubicin with hydralazine as a potential breast cancer 
inhibitory treatment.37 Salzillo et al recently conducted a 
study revealing that chlorogenic acid significantly boosts 
the anticancer effectiveness of doxorubicin against 
osteosarcoma cancer cells through the induction of 
apoptosis.38 Doxorubicin has also demonstrated enhanced 
apoptotic effects in preclinical studies combined with 
oncostatic agents such as melatonin.39 Similar synergistic 
effects have been observed with doxorubicin and other 
cytotoxic chemotherapy agents.40

Considering the apoptosis-promoting features of Smac 

mimetics and their ability to overcome apoptosis resistance, 
studies have hypothesized potential additive advantages 
of co-treatment with cytotoxic anticancer agents.41 A 
recent cell study demonstrated how the Smac mimetic 
SBP-0636457 enhances cell death by inducing tumor 
necrosis factor α (TNFα)/tumor necrosis factor receptor 
(TNFR) and nuclear factor kappa b (NF-κB) signaling 
pathways.42 This study also indicated the potential role of 
combination therapy in inducing the necroptosis process, 
presenting it as an alternative treatment for apoptosis-
insensitive breast cancer. Another recent study reported a 
synergistic apoptosis-inducing impact of doxorubicin and 
Smac mimetics as enhanced sensitization of doxorubicin-
treated cancer cells to apoptosis was observed through 
activation of FADD/RIPK1/CYLD/TNF/caspase-8 
signaling pathway.43 Some studies have also suggested the 
combination of doxorubicin with Apo2 ligand or TNF-
related apoptosis-inducing ligand (APO2L/TRAIL) could 
amplify anticancer effects through the administration 
of Smac mimetics.44 Moreover, cancer cell sensitivity 
to doxorubicin has been associated with the Smac/
DIABLO pathway, mediated through Bcl-2 and its pro-
apoptotic BH3-only member, BIM,45,46 thereby suggesting 
potential synergistic effects, which were confirmed by our 
study results. Therefore, combining Smac mimetic with 
cytotoxic agents such as doxorubicin presents a favorable 
apoptosis-inducing approach, offering great potential for 
developing efficient and effective anticancer therapies.

Conclusion
The Findings of the current study imply that treatment 
with BV6 and doxorubicin can potentially increase cancer 
cell sensitivity and how cancer cells react to doxorubicin. 
BV6 and doxorubicin can suppress cancer cell growth 
and aggression by activating the pro-apoptotic pathways 
and regulating the expression of apoptosis-linked genes. 
Moreover, the simultaneous administration of BV6 and 
doxorubicin significantly enhances their anti-proliferative 
and anti-migratory effects. The results indicate the 
potential effectiveness of this therapeutic approach in 
treating solid tumors. Nevertheless, further research is 
needed to evaluate the success of this strategy in vivo.

Figure 3. The mRNA Levels of Bcl-2 and BIM as Anti-Apoptotic and Pro-Apoptotic Factors Relative to Untreated Group. Note. Bcl-2 : B-cell Lymphoma 2; BIM: 
Bcl-2 interacting mediator; * P value < 0.05. The vertical axis demonstrates a fold change
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