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Introduction
In agricultural settings, atrazine (ATZ) or 2-chloro-4-
ethylamino-6-isopropylamino-s-triazine is one of the 
most widely applied herbicides.1 This herbicide is typically 
applied in sprays, liquids, concentrates, or granules. ATZ 
exerts minimal biodegradation in soil and water, which is 
most often found as a pesticide in surface waterways, so it 
influences the environment extensively.2 

Most body organs are affected by ATZ; furthermore, its 
impacts on the neurological, excretory, and reproductive 
systems have been thoroughly studied. ATZ is an endocrine 
disruptive pollutant that can cause thyroid cancer in 
female spouses of pesticide applicators in agricultural 
cohorts.3,4 alter the reproductive system of male rats, and 
deplete testis and epididymis antioxidant reservoirs. The 
liver exhibits signs of ATZ poisoning. The submandibular 
salivary glands of rats given oral ATZ exhibited oxidative 
stress, degeneration, and apoptosis.5 Rats given ATZ 
exhibited damaged hepatocytes, substantially elevated 
levels of total bilirubin, alanine aminotransferase, and 
aspartate aminotransferase, and decreased glutathione 
(GSH).6 Rats treated with even low dosages of ATZ 
exhibited lipidosis in hepatocytes, hepatic peri-acinar 

necrosis, and portal lymphocytic inflammation.6,7 
Genotoxicity has also been observed in the liver after 
subacute exposure to ATZ.8 Since ATZ is a commonly 
used herbicide, cases of poisoning are also common. 
As the liver is the primary organ of chemical exposure, 
there is no surprise that hepatotoxicity frequently occurs. 
Therefore, the introduction of novel therapeutic agents 
to prevent herbicide-induced hepatotoxicity is an urgent 
issue. 

Saffron (Crocus sativus L.) is employed in complementary 
medicine as a natural therapy against human diseases 
because it has antioxidant, anti-inflammatory, and 
anti-carcinogenic characteristics in addition to being 
hypolipidemic.9,10 Crocin, crocetin, and safranal are the 
three primary components of saffron. Crocin exhibits 
strong antioxidant activity and scavenges free radicals.11

One of the most effective strategies for combating 
hepatotoxicity in recent years has been the phytomedicine 
approach. The free radical scavenging functions of 
phytochemicals are mainly responsible for this protection. 
Therefore, the chief objective of the present investigation 
was to demonstrate the protective role of crocin against 
ATZ-associated liver injury.
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Abstract
Background: Atrazine is a typical herbicide that has domestic and agricultural uses all over 
the world. A review of the literature, however, revealed evidence of its destructive effects on 
many human tissues and signaling networks. As such, this study explored the impact of crocin, 
a natural pigment, on reducing the liver damage caused by atrazine in primary rat hepatocytes. 
Methods: As biochemical cytotoxicity indicators, cell death, lactate dehydrogenase (LDH) 
leakage, reactive oxygen species (ROS) generation, lipid peroxidation (LPO), glutathione (GSH) 
level, and mitochondrial membrane potential were assessed. 
Results: In the first step, LD50 concentration of atrazine was evaluated using a methyl thiazolyl 
tetrazolium (MTT) test in rat hepatocytes. The findings indicated that cellular function declines at 
LC50 concentration (400 M). On the contrary, crocin (50 µM) substantially boosted hepatocyte 
viability, decreased ROS production and LPO, replenished cellular GSH pools, and improved 
mitochondrial function. 
Conclusion: Overall, the data suggest that crocin may play a protective function in atrazine-
induced liver injury in which the main mechanisms of toxicity appear to be the generation of 
ROS and mitochondrial damage.
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Methods
Chemicals
Fetal bovine serum and Dulbecco’s Modified Eagle 
medium (DMEM) were obtained from Invitrogen 
Gibco. Albumin bovine serum was purchased from the 
Roche diagnostic company (IN). Collagenase (Type II), 
thiobarbituric acid, and all other chemicals were acquired 
from Sigma-Aldrich Co. (Heidelberg, Germany).

Primary Rat Hepatocytes Culture
Collagenase perfusion was used to produce primary rat 
hepatocytes,12 and the Trypan blue exclusion testing was 
implemented to assess the viability of the cells to obtain 
over 85% of viable cells for subsequent investigations. The 
separated hepatocytes were then incubated for 3 hours at 
37 °C in a humidified atmosphere of 95% O2 and 5% CO2 
and supplemented with 10% fetal bovine serum and 1% 
antibiotic-antimycotic solution. Hepatocytes were seeded 
in 12 well plates (2 × 105/mL) for various experiments 
and in 96 well plates (4.8 × 104/mL) for the viability tests. 
Crocin was administered one hour after the cells had 
been exposed to ATZ for 4 hours, and the cells were then 
incubated for another 3 hours at 37 °C. In the end, cultured 
hepatocytes were used to test cytotoxicity and other 
biochemical tests, including membrane injuries such as 
lactate dehydrogenase (LDH) leakiness, reactive oxygen 
species (ROS) production, mitochondrial membrane 
potential (MMP), GSH level, and lipid peroxidation 
(LPO). 

Cell Viability
Cell viability was assessed using methyl thiazolyl 
tetrazolium (MTT) and LDH activity. After incubating 
cells in 96-well plates, 50 mL of medium from every group 
was exposed to freshly made -NADH solution and left for 
20 minutes for LDH measurement. At the same time, an 
enzyme-linked immunosorbent assay microplate reader 
was applied to quantify the reaction mixture’s absorbance 
at 340 nm. The leftover medium was subjected to the MTT 
test by being incubated by MTT (1 mg/mL) for 4 hours 
at 37 °C. After the medium was picked up, the produced 
formazan crystals were dissolved in dimethyl sulfoxide. 
Finally, using an enzyme-linked immunosorbent assay 
microplate reader, the absorbance was read at 570 nm, 
and the consequent data were represented as a percentage 
of the non-treated group.

Preparing of Cell Lysate
Hepatocytes were exposed to a centrifugation step (5000 
g, 5 minutes) before washing with ice-cold phosphate-
buffered saline (PBS) to create the cell lysate. Afterward, 
the cell pellet was reconstituted with PBS and the resultant 
was sonicated three times for 30 seconds each time using 
an ultrasonicator (Parasonic 30S, Iran). Furthermore, 
Lowry’s technique was applied to estimate the amount of 
total protein.13

Reactive Oxygen Species 
Using the fluorescent probe 2′, 
7′-dichlorodihydrofluorescein diacetate (DCFH-DA), 
oxidative stress was studied. This dye can penetrate the 
cells. Rat hepatocytes were treated and then exposed to 
the dye solution. Hepatocytes were then incubated for 1 
hour at 37 °C. DCFH-DA is broken down by intracellular 
esterases to DCFH, which can then react with different 
types of ROS to produce the extremely fluorescent 
substance known as dichlorofluorescein (DCF). The 
amount of DCF was determined from a DCF standard 
via a spectrophotometer with an excitation and emission 
wavelengths of 485 and 535 nm, correspondingly.

Lipid Peroxidation
In sum, a solution of combined potassium chloride and 
ferric chloride was added to 0.5 mL of the cell lysate for 30 
minutes at 37 °C. The reaction was broken off by adding 
2.0 mL of an ice-cold solution of hydrochloric acid, 
thiobarbituric acid, trichloroacetic acid, and butylated 
hydroxytoluene. This solution was re-heated at 90 °C for 
a further 30 minutes. The mixes were then chilled and 
centrifuged at 7000 g (5 minutes). Further, the percentage 
of LPO was used to express the results according to the 
absorbance of the supernatants.

The Level of Glutathione
The level of GSH in hepatocyte cell lysates was calculated 
using the method developed by Popet et al.14 To do this, 
cell lysate (50 µL) was exposed to DTNB reagent [(150 µL) 
12 mM (NADPH 12mM, GSH reductase 50 U/mL, DTNB 
0.1 mM] and left over for 45 minutes. Then, the results 
were reported as nmol/mg protein through a calibration 
curve based on the amounts of GSH.
 
Mitochondrial Membrane Potential 
Hepatocytes were subjected to ATZ and crocin treatment 
before being incubated for 20 minutes at 37 °C in the dark 
with a medium encompassing 1.6 M of Rhodamine 123. 
The method is based on the selective lump of Rhodamine 
123 by active mitochondrion. The residual Rhodamine 
123 was quantified with a spectrophotometer apparatus 
at 490 nm excitation and 520 nm emission wavelengths, 
and the results were reported as nmol/mg protein. 
 
Statistical Analysis
For three separate experiments, the results were presented 
as the mean ± standard error of the mean. A one-way 
analysis of variance was utilized for the statistical analysis, 
followed by Tukey’s post hoc test, and the P value below 
0.05 was regarded as statistically significant.

Results 
The viability of rat hepatocytes was treated with ATZ in 
escalating doses to perform the MTT test. Concentration-
dependent toxicity was noted, with the ATZ LC50 (the 
concentration that caused 50% of the hepatocytes to 
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die) being 400 µM, as shown in Figure 1A. Moreover, 
crocin (50 µM) could significantly reduce the ATZ-
induced toxicity, as illustrated in Figure 1B. Lower crocin 
concentrations, however, did not exhibit any significant 
protective effect. This study looked into LDH leakage, 
a crucial indicator of damaged cell membranes. When 
crocin was added, LDH leakage significantly decreased, 
indicating protection against ATZ-related membrane 
damage. Nevertheless, the treatment of hepatocytes with 
ATZ markedly accelerated LDH leakage (Figure 2).

Hepatocytes exposed to ATZ exhibited a surge in 
cellular ROS generation. Moreover, crocin at a 50 µM 
concentration could significantly reduce DCF fluorescence 
(Figure 3). Oxidative danger frequently occurs after the 
breakdown of cellular lipids. Furthermore, the LC50 
concentration of ATZ boosted ROS production while also 
causing the membrane lipids to degrade, and crocin (50 
µM) significantly reduced the quantity of LPO (Figure 4). 

The major endogenous antioxidant protection against 
xenobiotic-induced toxicities in cells is GSH. ATZ (400 
µM) substantially plummeted cellular GSH levels in 
comparison with the control group, while crocin (50 µM) 
therapy of hepatocytes effectively refilled cellular GSH 
reservoirs (Figure 5). Figure 6 depicts the effect of ATZ on 
the activation of mitochondrial membrane breakdown. 
ATZ significantly decreased MMP in the culture media 
when applied to hepatocytes, but crocin (50 µM) exhibited 
observable effects on reversing mitochondrial activity 
(Figure 6).

Discussion
Exogenous substances such as xenobiotics and poisons 
are extensively metabolized in hepatic tissue, producing 
a variety of metabolites that can either be less harmful or 
more toxic depending on their structure.15 Moreover, the 
risk of hepatotoxicity increases because the liver is the 
primary site of xenobiotic exposure.16,17 The investigation 
of potential toxicological pathways and the introduction 
of protective chemicals become crucial correspondingly. 
The occurrence of oxidative hazard is regarded as 
one of the main mechanisms of liver damage. ATZ-
mediated toxicity has been linked to oxidative damage.18 
After intoxication, ROS formation can disrupt the cell 
membrane.19 Furthermore, ROS-induced changes in 
cellular constituents might result in the denaturation of 
proteins, peroxidation of unsaturated fatty acids, and 
depletion of the cellular antioxidant pool.20 In the present 
study, LPO production as a sign of oxidative stress 
following ATZ administration is consistent with earlier 
research.21 Hence, using antioxidants to combat such 
toxins may be a beneficial strategy. Natural antioxidants 
have drawn interest in this regard due to their safer 
performance. According to a study by Hosseinzadeh 
et al, crocin effectively reduced ischemia-reperfusion-
related oxidative injury in vivo.22 Likewise, according 
to Mehri and colleagues’ study, crocin reduced the 
acrylamide-associated neurotoxicity in rats by preventing 

Figure 1. Viability of Rat Hepatocytes Tested with MTT Assay. (A). Effect 
of crocin (20 μM) on the viability of ATZ-treated hepatocytes (B). Results 
are represented as mean ± SD of 3 independent experiments. Note. MTT: 
Methyl thiazolyl tetrazolium; ATZ: Atrazine; SD: Standard deviation. 
* Significant compared to non-treated; # Significant in comparison with 
ATZ–treated hepatocytes (P < 0.05)

Figure 2. Membrane Leakage of Rat Hepatocytes Assessed by LDH Test 
(A). Effect of Crocin (50 μM) on the Membrane Integrity of ATZ-treated 
Hepatocytes (B). Data are represented as mean±SD of 3 independent 
experiments. Note. LDH: Lactate dehydrogenase; ATZ: Atrazine. * 
Significant compared to control; # Significant compared to ATZ–treated 
hepatocytes (P < 0.05)
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oxidative stress.23 Moreover, it has been found that the 
antioxidant capabilities of crocin and saffron extract 
decrease malondialdehyde levels and ROS-stimulated 
peroxidation of membrane lipids.24 Saffron and crocin 
have also been reported to regulate oxidative indicators 
in the hippocampal function.25 These studies support our 
findings, reporting that after crocin administration, ROS 
formation and further LPO were plunged, GSH levels were 
replenished, and MMP increased. Different studies have 
revealed the cytotoxic effects of ATZ in which oxidative 
stress-related pathways play a pivotal role. For instance, 
ATZ induces oxidative-stress-mediated apoptosis in the 
testicular tissue of male offspring whose mothers were 
exposed to this herbicide. This can lead to a plummeted 
number of sperms, elevated sperm abnormality, and 
spermatogenesis. It has been reported that the treatment 
of animals with crocin during pregnancy and lactation 
significantly reverses ATZ-induced damages.26 Therefore, 
the use of crocin as a potent antioxidant agent in 
reducing ATZ-induced hepatotoxicity can be explained. 
Furthermore, earlier research showed that crocin 
dramatically decreases malondialdehyde levels in animal 

models treated with cisplatin, cyclophosphamide, and 
diazinon while increasing the liver’s GSH content.27-29

According to Lieshout et al, consuming foods high in 
antioxidants could hasten the binding of toxic materials 
with GSH and their elimination from circulation.30 
Antioxidants might then act in concert to shield crucial 
tissues against oxidative harm. Intrinsic anti-ROS systems 
in the body include antioxidant enzymes and non-
enzymatic antioxidants such as GSH. Monitoring the 
quantity of cellular GSH can therefore provide us with 
information about the liver damage caused by ROS. The 
current study found that ATZ significantly reduces GSH 
levels, which is consistent with earlier research.31 It has 
been demonstrated that crocin can neutralize some free 
radicals and raise cellular GSH.32

As a well-known target and the source of cellular 
ROS production, mitochondria are vital subcellular 
organelles.33,34 Furthermore, increased ROS production 
may increase the sensitivity of mitochondria, which 
could lead to mitochondrial dysfunction, uncoupling of 
oxidative phosphorylation, and eventually membrane 
damage.35 Cytochrome c and other pro-apoptotic 

Figure 3. Effect of Crocin (50 μM) on the ROS Formation of ATZ-Treated 
Cells. Note. ROS: Reactive oxygen species; ATZ: Atrazine; SD: Standard 
deviation. Results are represented as mean ± SD of 3 independent 
experiments. * Significant in comparison with non-treated; # Significant 
compared ATZ–treated hepatocytes (P < 0.05)

Figure 4. Effect of Crocin (50 μM) on the LPO of ATZ-Treated Cells. Note. 
LPO: Lipid peroxidation; ATZ: Atrazine; SD: Standard deviation. Results 
are represented as mean ± SD of 3 independent experiments. * Significant 
in comparison with non-treated; # Significant compared with ATZ–treated 
hepatocytes (P < 0.05)

Figure 5. Effect of Crocin (50 μM) on the Glutathione Level of ATZ-Treated 
Cells. Note. ATZ: Atrazine; SD: Standard deviation. Results are represented 
as mean ± SD of 3 independent experiments. * Significant in comparison 
with non-treated; # Significant compared with ATZ–treated hepatocytes 
(P < 0.05)

Figure 6. Effect of Crocin (50 μM) on the MMP of ATZ-Treated Cells. 
Note. MMP: Mitochondrial membrane potential; ATZ: Atrazine; SD: 
Standard deviation. Results are represented as mean ± SD of 3 independent 
experiments. * Significant in comparison with non-treated; # Significant 
compared with ATZ–treated hepatocytes (P < 0.05)

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



Crocin reduces atrazine hepatotoxicity

Int J Drug Res Clin, 2023, Volume 1 5

elements will therefore be liberated into the cytoplasm.36,37 
This study found that mitochondrial damage plays a role 
in the pathophysiology of ATZ-related hepatotoxicity. 
Moreover, the preventive mechanisms of crocin against 
ATZ-induced liver damage may involve mitochondrial 
pathways.

Conclusion
In summary, the findings demonstrated that crocin 
administration has protective effects against ATZ-induced 
liver damage in primary cultured isolated rat hepatocytes. 
The primary protective mechanisms of crocin appear 
to be mediated by its antioxidant and mitochondrial 
protecting activities, which were demonstrated as the 
inhibition of LPO, prevention of GSH depletion, and 
reduction of MMP collapse. Therefore, it might be 
suggested that using crocin as a potent antioxidant and 
mitochondrial protective agent can be beneficial against 
various xenobiotics that cause hepatotoxicity, particularly 
for ROS-related damage. However, further in vitro and 
in vivo experiments are required to clarify the protective 
mechanisms of protection, the possible association of 
divers signaling cascades, and validation of the doses 
used in animals before clinical trials, which can also be 
mentioned as the limitation of our study. 
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